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Time-Dependent Correlations in an 
Inhomogeneous One-Component Plasma 
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Sum rules describing perfect screening at equilibrium in a classical plasma are 
extended to the time-displaced structure function of an inhomogeneous one- 
component plasma. We find that there are long-wavelength modes which 
oscillate undamped with a single frequency 03, 032 being an angular average of 
the squared plasma frequency at infinity. Our results are derived heuristically, 
allowing also for quantum effects, from linear response theory, and rigorously 
from the classical BBGKY hierarchy under some reasonable assumptions on the 
spatial decay of correlations. Special cases are investigated, in particular 
plasmas bounded by walls of varied shapes. 
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inhomogeneous plasma. 

1. I N T R O D U C T I O N  

Let N(q) be the microscopic charge density at a point  q of a C o u l o m b  fluid 

(plasma, electrolyte,...), in equi l ibr ium at the inverse temperature  ft. The 
static charge structure funct ion is defined as 

S(ql ] q 2 ) =  (N(ql) N(q2) )T= (N(ql) N(q2) ) -  (N(ql) )(N(q2) ) (1.1) 

where ( ) denotes an average over an equi l ibr ium ensemble. In  the 
homogeneous  case, (N (q ) )=  0. The funct ion S is know n  to obey a variety 
of sum rules, e.g., the St i l l inger-Lovet t  rules (1) 

f dq S(q l O)=O (1.2) 
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and 

2~[3 f dq Iql 2 S(q I 0) = - 1  (1.3) 
3 

In terms of the Fourier transform 

= f dq e x p ( - i k . q )  S(q [ 0) (1.4) rX(k ) 

(1.2) and (1.3) are equivalent to 

4rtflS(k) 
ik[2 ~ 1, as k-- ,0  (1.5) 

These sum rules have been generalized to the case of an inhomogeneous 
Coulomb system by Carnie and Chan32'3) They take the form 

1 
fl f dq f dql ['~l I S(ql I q ) =  1 (1.6) 

The sum rules express the macroscopic property of screening which is 
possessed by Coulomb fluids. They can be derived by using linear response 
theory and assuming that an external charge introduced in the fluid 
induces a polarization charge which cancels the external one. More 
rigorous derivations using the BGY hierarchy can be given under suitable 
clustering assumptions. 

In the present paper, we derive a dynamical and quantum mechanical 
generalization of (1.6) (and some other sum rules), for inhomogeneous one- 
component plasmas (OCP). The restriction to OCP's (i.e., to systems of 
identical particles of charge e and mass m in a fixed background of 
opposite charge) has to be made because we use a unique property of these 
systems: the long-wavelength plasma oscillations are not damped. From a 
microscopic point of view, this is related to the validity of a dipole sum rule 
[see (3.30)]. We can however deal with a large class of inhomogeneous 
OCP's: we allow the background density Pb(q), a function of the position 
q, to have a value at infinity which may depend upon the direction/2 in 
which q recedes to infinity. More precisely, lim . . . .  pb(r, f2) = p~(f2) exists 
(for almost every 12), with q = (r, t2), r = Iqr, f2 = angles ofq. This allows in 
particular for OCP's bounded by walls of varied shapes. 

Defining the usual dynamical structure factor S(ql, t lq) as the 
correlation function between the charge density at time t and point ql and 
the charge density at time 0 and point q, we find the proper dynamical and 
quantum-mechanical generalization of (1.6). It is Eq. (2.15), which reduces 
to (2.16) in the classical limit, and to (2.17) in the quantum mechanical 
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static limit; the e5 z appearing in these equations is defined by (2.12) as an 
angular average of the plasma frequency (squared) copz(g2) at infinity. 

Note that a system of real atoms and molecules in which the nuclei are 
treated as fixed is included in our scheme, provided that they are confined 
to a bounded region of space. This region is then imagined surrounded by 
a more smeared out background pb(r, if2) which has the limit p~(~2) as 
r ---~ o 0 ,  

In Section 2, we derive our generalization of the Carnie and Chan sum 
rule by using a linear response argument. We discuss in some detail a num- 
ber of special cases. Through another linear response argument, we also 
obtain another family of sum rules involving the dipole moment of the 
charge structure factor. We also consider the effect of images forces created 
by a dielectric wall. The key ingredient is the assumption that macroscopic 
physics has to be valid on large length scales. 

Section 3 reinvestigates the above-mentioned generalized sum rules, in 
the classical case, from a microscopic point of view, based upon the 
BBGKY hierarchy and reasonable spatial clustering assumptions. A 
preliminary account of this part has already been published. (4) 

2. LINEAR RESPONSE APPROACH 

2.1. Generalized Carnie and Chan Sum Rule 

Let a system in equilibrium with a hamiltonian Ho be subjected to a 
perturbation A cos cot, where A is some observable. The linear response of 
some other observable B, i.e., the change of the average value of B, com- 
puted to first order in A, is of the form (5/ Re[zBA(co ) exp(--icot)], which 
defines the response function 7,BA(co)- We also consider, in the unperturbed 
system, the time dependent correlation function, 

CAB(t) = (A(t) B(O) )T (2.1) 

where A(t) and B(t) are the Heisenberg operators associated to A and B, 
and ~ )v  is a (truncated) canonical average for the nonperturbed system, 
and we define its Fourier transform 

1 oo 
~ A,~( o~ ) = ~ f ~ dt exp( imt ) CaB(t ) (2.2) 

The response function and the correlation function are thus related by the 
fluctuation-dissipation theorem: 

h 1 
CA~(co) = Im X~A(co) (2.3) 

1 - exp( - ~hc~) 
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where we have assumed that A and B both have the same parity with 
respect to time reversal. 

For our purposes here we choose H 0 to be the Hamiltonian of a 
OCP (6) and the perturbation as caused by an external oscillating charge 
e o cos cot located at the origin. Thus 

A=eo f dql ]-~t] N(ql) (2.4) 

where N(q~) is the Schr6dinger operator for the charge density at point ql. 
Letting 

B = B(q) = N(q) (2.5) 

we obtain from (2.2) 

=eo ['~ dt exp(i~ot) I dql ~ S(q,,t I q) (2.6) C AB(q)(fD ) 2re J 

where S is the time-dependent charge-charge correlation function 

S(ql, t l q)= (N(q~, t) N(q, 0 ) ) r  (2.7) 

and N(ql, t) is the Heisenberg operator which corresponds to N(q~)= 
N(ql, 0). 

C~a(q/(Co) in (2.6)is related through (2.3) to ZB(q)A(CO), the charge den- 
sity at q. Now, the key point is that the integral 

Q -= f dq ge(q)A(o~) (2.8) 

can be obtained by a macroscopic argument which goes as follows: 
ReEQexp(-i~ot)] is the total net charge induced in the plasma by the 
external charge. In the static case (~o = 0), one would have perfect screening 
and Q + e0 would vanish. In the dynamical case (co r  Q + e0 does not 
vanish because the plasma does not adjust itself instantaneously to the 
external charge. It is however still possible to compute Q, if we assume that 
the induced charge density decays fast enough at a large distance R from 
the origin for the electrical field to be asymptotically of the form 
Re[E exp( - icot)] with 

E ~ - 2  u (2.9) 
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(u is t~he radial unit vector). When (2.9) holds and the background density 
Pb(q) has a well-defined limit p~(O) as q goes to infinity in the direction O, 
E will induce a radial current density Re[ j  exp(-icot)] with 

e2poo(O) 
--imj - -  E (2.10) 

m 

Charge conservation then requires that 

icoQ = R 2 f j .u  dO (2.11) 

Combining these equations, and introducing the averaged plasma fre- 
quency (5 defined by 

032 e2 f =m p~(O) dO (2.12) 

we obtain 
032 

Q = ~ e o  (2.13) 

In Eq. (2.13) ~o is to be understood as having an infinitesimal positive 
imaginary part which ensures that the perturbation is introduced 
adiabatically. (5) We find then from (2.8) and (2.13), 

f no3 --lIm dqZB(q)A(('O)= - - T  [(~((.0 -- 0)) -- (~((L) q- O3)] 
eo 

(2.14) 

Using (2.6) and (2.14) in (2.3), and taking the Fourier transform with 
respect to ~o, we obtain the final result 

ho3 I exp(-i03t) exp(io3t) .7 
f dq f dql S(ql, t l q)=-~- 1--e--~p(-fi-ho3) 1-exp(flho3)J 

(2.15) 

This is the generalization of the Carnie and Chan 
dynamical quantum mechanical case, for OCP's. In 
(h ~ 0), one finds 

fl f dq f dql l-~ll S(ql, t l q) =cos 03t 

sum rule to the 
the classical limit 

(2.16) 

In the static quantum mechanical limit (t = 0), one finds 

1 ho3 /~ho3 
f dq f dql l-~,l S(ql' O I q)=--2-c~ 2 (2.17t 
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An alternative, equivalent, derivation of (2.13) can be obtained by 
starting with the �9 (6) expression 

2 
e(co)= 1 mP (2.18) 

(.02 

for the dielectric function e(co) of a homogeneous one-component plasma 
with density Pb, where COp is the plasma frequency: 

4~ze2pb 
~Op2-- m (2.19) 

In the present inhomogeneous case, where Pb is a function of the position 
q, which has however a limit at infinity in each direction g2, (2.18) and 
(2.19) still define a dielectric function at infinity e+(co, Q). Hence, if an 
external charge eo cos cot is located at the origin, then, by Gauss's theorem, 
if we integrate E on a large sphere of radius R centered at the origin, we 
obtain 

R 2 (, 
j e~(co, ~)E'u dr2 eo (2.20) 

where E must be of the form (2.9). This gives at once (2.13). 

2,2. Special Cases 

The general sum rule (2.15) can be applied to many special cases. 

U n i f o r m  OCP. For a uniform plasma (constant background den- 
sity Pb), e5 is the plasma frequency and (2.15), (2.17) reduce to a well- 
known long-wavelength sum rule (6 8): the left-hand side of (2.15) becomes 
limlk I + o(4rc/Ikl 2) S(k, t), where 

S(k, t)= f dq exp[ik. ( q - q , ) ]  S(ql, t [ q) (2.21) 

is the dynamical structure factor. 

Semi-Infinite OCP.  In the case of a semi-infinite plasma bounded 
by an impermeable plane wall, 
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(the coordinate vector q of a point is now split into the component x nor- 
mal to the wall and the component y parallel to the wall), the frequency 

(2;~_~ e 2) 1/2 
(5 = ~ = co s (2.23) 

is the surface plasma frequency. (9) In terms of the two-dimensional partial 
Fourier transforms 

dy exp( - ik. y) 1 2re j (y2 + x2)~/2 - tkl exp(-{kl  Ixj) (2.24) 

and 

~ ( x l , k , t ] x ) = f d y e x p [ i k ' ( y - y l ) ] S ( x ~ , y ~ , t l x ,  y) (2.25) 

the left>hand side of (2.15) becomes 

lim - -  dx dxl e x p ( -  Ik] xl)  S(xl,  k, t ] x) 

Thus we recover a known sum-rule, (1~ equivalent to Eq. (3.11) of Ref. 10. 
Through substraction of a bulk contribution, this sum rule gives infor- 
mation about the asymptotic form of S(Xl, Yl, t I x, y) as ]Yl - Yl ~ ~ :  
for fixed xl and x, S decays like iYl-YJ  3. It is expected to decay much 
faster along any other O. 

T w o - D e n s i W  OGP.  For a two-density plasma, 

pb(q)=(p+, x > 0  (2.26) 
( p _ ,  x < 0  

(the plane x =  0 may be permeable or impermeable to the particles), the 
frequency c5 is 

[- 2~e2 11/2 
ch = L--~-- (p+ + p _ )  (2.27) 

the left-hand side of (2.15) becomes 

�9 2 T O  c o  o o  

2 o fdxfdx, exp(-Ikl Ixli) (x,,k,, I x) 
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and we recover the sum rule (5.2) of Ref. 10. Again, through a substraction 
of bulk contributions this sum rule gives information about the asymptotic 
form of S(Xl, Yl, t l x, y) as l y l - y l  ~ ~ .  

W e d g a .  Let us now consider a plasma bounded by a wedge: the 
plasma is confined between two intersecting half-planes; the background 
density has a constant value Pb inside the wedge, 0 elsewhere. The z axis is 
the edge of the wedge, and the set of coordinates q can be chosen as cylin- 
drical coordinates (z, r, 0). The frequency cb is 

where c~ is the angle between the two half-planes; this is an edge 
plasmon (1~) frequency. In terms of one-dimensional partial Fourier trans- 
forms 

1 
f ~  dz exp(ikz) 2Ko(Ikl r) (2.29) 2 F2)1/2 ~- J - -oo  + 

and 

S(rl, 01, k, t I r, 0 ) =  f ~  dzexp[ ik (Z-Zl )]S(z l ,  r l , 01 , t l z ,  r,O) (2.30) 

the left-hand side of (2.15) becomes 

l im2  dO drr dO 1 drlrlKo([klr , )S(rl ,01,k ,  tLr, O ) 
k--*O 

Substracting from (2.15) surface and bulk contributions, as described in 
Appendix A, we can show that, as [ z -  zll ~ ~ ,  S(Zl, rl, 01, t Lz, r, O) has 
the asymptotic form f ( r  l, 01, t] r, O)/[Iz-zl l  (ln ]z-z1[)  2] obeying the 
sum rule 

dO dr r dO1 dr1 r t f (r l ,  01, t I r, O) 

exp(-idot)  exp(icht) ] 
h~581 - e x p ( -  flh~) 1 - exp(flhch)/ 

h8s I e x p ( -  it~ 
+ - -  l -exp(- f lhcos)  

_ exp(i~~ ] 
1 -- exp(flhms)J 

~ - ~  I exp(-i~Opt) exp(impt) ] (2.31) 
+-]--~-hmp 1 --~-xp~----~p) 1 -exp(flh~op)_l 
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Cone.  Obviously, (2.15) can be applied to a plasma confined in a 
cone, the apex of which is at the origin. The frequency is 

(5 = (2.32) 

where s is the solid angle of the cone. 

Slab .  For a plasma confined in a slab of thickness a, the averaged 
frequency (5 defined by (2.12) vanishes. If we again split q into x normal to 
the slab walls and y parallel to them, in terms of the two-dimensional 
Fourier transform (2.25), Eq. (2.15) becomes 

" 2=fo  re" fl r~Imo-~l dx dx~ S(xl, k, t i x ) =  1 (2.33) 

Equivalently, since the Fourier transform of [kl is -1/(2r~ jyl3), we get the 
coordinate space asymptotic sum rule 

re' f :  1 (2.34) fl dx dXl S(x~, Yl ,  t l x, Y)Iy~ y t ~  47r2 lY~ _y]3  

It is remarkable that these sum rules have exactly the same form in the 
general dynamical and quantum mechanical case as in the static classical 
case: t and h do not appear in the right-hand side. This is so because a slab 
is essentially equivalent to a two-dimensional electron system, the collective 
oscillations of which have a frequency ~o which behaves like Ikj 1/2 for small 
wave numbers. ~2) Therefore, in the small-k limit, these oscillations dis- 
appear. 

In the case of a classical system, a more complete description of S in 
the small-k limit has been given by Baus, ~21) for a two-dimensional system 
of electrons. We believe that his results also hold for a slab of finite 
thickness, after S(xl, k, t l x )  has been integrated upon xl and x. The 
results of Baus go beyond (2.33) and give information about terms of 
higher order in k. 

Cy l inde r .  Similar considerations apply for a plasma confined in a 
cylinder with a cross section S of arbitrary shape but finite area. Again, (5 
vanishes. We now split the set of coordinates q into z parallel to the cylin- 
der direction and r parallel to its cross section (in the present paragraph, r 
is a two-dimensional vector). In terms of the one-dimensional Fourier 
transform 

S(rl ,  k, t ] r) --- dz exp[ ik(z  - z~)] S(rl ,  z l ,  t I r, z) (2.35) 
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Equivalently, 
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-/~ }imo 2 In [k[ f sdr fsdr lS(r l ,k ,  t l r ) = l  (2.36) 

since the Fourier transform of l/In Ikl behaves 
asymptotically (~3) like 1/I-2 Izl (ln Izl)2], we get the coordinate space sum 
rule that 

t~ Isdr fsdrl S(rl, zl, t l r, z) 

has in its asymptotic form, as I z l -  z[ ~ ~ ,  a term 

1 

4 ]Zl-z[  (In [zl--ZI) 2 

(plus perhaps oscillating terms coming from possible singularities for finite 
real values of k). 

Again these sum rules are the same as in the static classical case/~3~ 
owing to the fact that the frequency co of the collective oscillations goes to 
zero with k (like Ikl Iln ]k[lm). 

2.3. D ipole  Sum Rules 

The sum rule (2.15) was obtained by analyzing the linear response to 
the radial electrical field of an external point charge. We now turn to 
another family of sum rules which can be obtained by analyzing the linear 
response to a homogeneous external electrical field; these sum rules involve 
the dipole moment of the pair correlation function. 

For a uniform plasma, we would get once more the Stillinger-Lovett 
sum rule. Thus, we turn to other geometries. 

S e m i - I n f i n i t e  OCP.  We want to consider again the semi-infinite 
plasma with the background density (2.22). This semi-infinite geometry can 
be obtained as the limit of a slab geometry, in which the plasma is confined 
between two parallel walls at x = 0 and x = L; the limit L ~ oe will be 
ultimately taken. We choose the perturbation as caused by charging the 
walls at x = 0  and L with oscillating uniform surface charge densities 
+ c~ cos ~ot. Thus 

A = --4~c~ dy 1 dx1XlN(Xl, Yl) (2.37) 
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We look at the response of the charge density at (x, y = 0) 

B = B(x) = N(x, 0) (2.38) 

Now 

f:/2 -4rcc~ 1--- f _ ~ dt exp(i~ot) f~/2 dx CAB(x)(CO) = dx f dy~ 

X dXl Xl S(Xl ,  Y l ,  t l x)  (2.39) 

is related through (2.3) to 

_ ~ L/2 
dx ZB(x)A(O) (2.40) 

The quantity Re[a  exp(- i~ot)]  is the surface charge density induced in the 
plasma along the wall at x = 0 (as L becomes large, we actually expect this 
charge to be localized near the plane x = 0, i.e., ZBc~.4(~o) will have a fast 
decay as x increases; thus the precise value of the upper integration limit in 
(2.39) is irrelevant. An opposite charge will be localized near the plane 
x = L). Therefore, a can be obtained from a macroscopic argument, either 
by the same kind of reasoning as the one leading from (2.8) to (2.13), or, 
more rapidly, by using the dielectric function (2.18) and equating two alter- 
native expressions for the electrical field in the bulk, after the limit L ~ oo 
has been taken: 

F 41r~ ] 
R e [ 4 ~ ( ~ + a ) e x p ( - i ~ o t ) ]  u x = R e  L- g-jexp(-icot) ux (2.41) 

(where ux is the unit vector along the x axis). Thus we obtain at once 

2 
cop (2.42) 

( O  - -  fop 

where cop is the bulk plasma frequency (4~pbe2/m) 1/2, and, from (2.3) 

-4z~ I~  dx f dyl f ?  dx, x,S(Xl,  y, ,  t l x) 

=he)p[ exp(-iOJpt) exp(icopt) ] 
(2.43) 

2 L 1 - exp( - ~ho)p) t - exp(flhcop) j 

This is the generalization of the classical static dipole sum rule at a 
wall.(3, ~4) 
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OCP w i th  Two Densities. We now consider the two-density 
plasma with the background density (2.26). Let 

{4rceZp+'] 1/2 (4rc~_p)1/2 
c o + = \  m / ' co_= (2.44) 

be the plasma frequencies in the two regions. Choosing again the pertur- 
bation as caused by charging the plane x = 0 with a surface charge density 
c~ cos cot and the plane x = L with the opposite charge, we can follow the 
same steps as in the previous paragraph, except that now o must be defined 
a s  

= ~ L/2 dx )~(x)A(CO) (2.45) 

because there are induced charges on both sides of the wall at x = 0. Thus 
we now obtain 

- - 4 ~  d x  d y  1 d x  I x 1 S ( x t ,  y l , t l  X) 

I exp(- ico+t)  exp(/co+t) ] 
h c o +  1 -exp(flhco+) 2 -exp( - f lhco+)  l 

(2.46a) 

and by a similar reasoning in the region x < 0, 

dxl x I S ( X  1 Yl, t l X) 
--oo oo 

_ I  exp(- ico_t)  exp(ico t ) ]  (2.46b) _ hco2 1 Z ~ _ - - ~  ) 1 -~xp(fl-h~ ) 

In the classical static case, these dipole sum rules (2.46a) and (2.46b) 
reduce to 

-4=fi f ~176 dx f dY' fo ~ dxl xlS(x*' yl l x) 

f ;i ~ =4nil dx dyl dXl X l S ( X l ,  Yl I X)= 1 
-- oo oo 

(2.47) 

We expect (2.47) to be valid also at the interface between two multicom- 
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ponent plasmas. Note also that by combining (2.46a) and (2.46b) one 
obtains a sum rule for the total dipole moment 

472 dx dym J dxl xl S(xl, Yi, t f x) 
- - o o  oO 

I exp( - i co_  t) exp(ie)_ t) 
hco_ i ) 1 

- 2 - exp(-/~hco_ S e x ~ o _ ) J  

hco+[  e x p ( -  ico+ t) exp(ico + t) 
2 L l - e x p ( - / ~ h ~ ~  1 - ~ o + ) J  (2.48) 

In the classical static case, the right-hand side of (2.48) vanishes, as it 
should since we expect the dipole moment f~dXlXlS(X, ,  ylJx) to 
vanish in a conducting medium, i.e., when the charges can adjust to give a 
good decay of correlations. (~5) 

The sum rules (2.43) and (2.46) can also be obtained by looking at the 
response to the radial electrical field created by a charged sphere of radius 
R; the limit R---, oe is taken at the end of the calculation. This approach, 
similar to the one which can be used in the classical static case,/14) is for- 
mally more correct for taking the thermodynamic limit. 

2.4. Image Forces 

Image effects can be incorporated in the above results about the semi- 
infinite plasma. We now assume that the semi-infinite plasma, which 
occupies the region x > 0, is bounded at x = 0 by a plane wall with a dielec- 
tric constant e w- We only consider the case when e w is finite. 

Tile changes to be made in (2.15) are easily found. An external point 
charge eo, located on the wall, at the origin, now creates a potential 
2eo/[(l+ew) [ql[] rather than eo/[qll. The frequency (2.23) has to be 
replaced by 

F 4rcPbe2 ]1/2 
e5 = L ( [ +  ~ ~-3"mJ (2.49) 

and the sum rule (2.15) becomes 

f dq f dq~ ~-~-~l~ S(q~, t l q) 

Jo = lim dx dXl e-IkixlS(x 1, k, t] x) 
k ~ 0  

l+~whd) ~ exp(- ie3t)  exp(iaSt) ] 
- 2 2 [_ 1 -exp( - /3heS)  1 z ~ e 3 ) J  (2.50) 
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The argument leading to the sum rule (2.43) however is not sensitive 
to the value of ew, and (2.43) is not modified. Thus, image effects do not 
appear explicitly in the dipole sum rule 4 as already stated in Ref. 3 for the 
static classical case. 

It may be noted that pertinent results for the case of an ideal conduc- 
tor wall (ew= co) cannot be obtained by taking the limit ~ w ~ oe in the 
above results. In that limit, the three expressions in (2.50) all diverge. As to 
(2.43), it is not valid in the case ew = o% because the limit ew--* oe and the 
integrations are operations which cannot be interchanged (this can be 
easily seen for the weak-coupling (16) explicit expression of 
S ( X l ,  Y l ,  t= 0Ix). 

3. MICROSCOPIC THEORY 

In this section we show that the dynamical sum rules previously 
derived from linear response and macroscopic screening arguments are 
exact consequences of the microscopic dynamics of the correlations. We 
treat the classical case: the quantum mechanical situation can be studied by 
analogous methods .  

3.1. Time-Dependent Correlations 

Let u = (q, p) denote the position and momentum coordinates of a 
particle, and U =  (ul ..... u,), V=  (vl,..., vk) sets of particle coordinates. The 
time-dependent correlation functions involving n particles at time t and k 
particles at t = 0 are defined by 

p(U, tl V ) = l [  ~ 6(u~-~,,(t))"'6(un-fii.(t))] 
i l ~  "'" Pin 

J l ~  "'" ~ j k  

~i(t) = (qi(t), pi(t)) are coordinates of the ith particle at time t under the 
classical evolution, and ( . . . )  is the thermal average on initial conditions 
~i(0) = fie- 

From the stationarity of the equilibrium state, we have the symmetry 
relation 

p(f,  t l v ) = p ( v ,  - t l  u)  (3.2) 

4 But image effects do appear explicitly in (2.50). Reference 3 might be misleading on this 
point. 
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When the set V is empty, the correlations reduce to their equilibrium (time- 
independent) values 

p(ul ..... u,, t )= p(u 1 ..... u~) 

( /~ )3/z ( p2,] (3.3) 
=P(ql ..... q,,) FI \ ~ m ]  exp - ~  2rn] 

i = 1  

where P(ql,..., qn) are the usual equilibrium configurational distributions. 
A quantity of particular interest is the position and momentum- 

dependent charge-charge correlation 

S(u, t I v) = e2[p(u, t t v) - p(u) p(v)] (3.4) 

from which we recover the configurational part (2.7) by integration over 
the momentum variables 

S(q, t l q , )=  f dp f dpl S(q, p, t] ql, Pl) (3.5) 

(In the sequel, we simply suppress momentum arguments in the correlation 
functions when they have been integrated out). 

More generally, we define the excess charge density at time t, when 
particles were fixed at V=(q~, p~;...;q~, Pk) at t=0,  by e[p(q, t l V ) -  
p(q) p(V)]. This quantity is the time-dependent generalization of the static 
excess charge density introduced in Ref. 15 

e[p(q, t = 0 [  V ) - p ( q ) p ( V ) ]  

= e p(q,  ql,..., qk) + ~ c~(q -- qi) P(ql ..... q~) -- P(q)  P(q~ ..... qk) 
i = 1  

x I~I (2@m) 3/z exp ( - f l  p2,] (3.6) 
i=i 2 m /  

BBGKY Hierarchy.  The BBGKY equations for the time-depen- 
dent correlations (3.1) of an inhomogeneous OCP with background density 
Pb(q) have been discussed in Refs. 17 and 18. For n = 1 this has the form 

0 
~?t p(ul, t l V) 

= - P l " v q l p ( u ~ , t l  V ) - eE(q t ) 'Vp lp (u~ ,  t l V) 
m 

(" 

-- e2 J dq2 F(ql -- q2) " Vpl[p(ul, q2, t [ V)-- p(q2) p(u 1, t [ V)] 

(3.7) 

822/41/5-6-15 
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where F(q)= -Vq(1/[ql) is the Coulomb force and 

E ( q ) : e l d q l F ( q - q l ) [ p ( q l ) - p b ( q l ) ]  (3.8) 

is the electric field due to the total charge density. 
When the particles are constrained to move in a restricted domain D 

bounded by hard walls, the configurational integrals are restricted to D 
and we supplement equation (3.7) (valid inside D) by the condition of 
elastic collisions at the walls, i.e., 

p(q, p, t l v)Iq~az,=p(q, H, t l v)[q~aD (3.9) 

/5 is the momentum of an elastically reflected particle at q on the boundary 
c~D of D, with incident momentum p. 

We assume throughout this section that the time-dependent 
correlations (3.1) exist in the thermodynamic limit and satisfy the BBGKY 
equations for all times. 

Decay Propert ies.  We introduce the truncated correlations 
defined in the usual way 

Pr(Ul, t l V )=p(u l ,  t l V ) - p ( u l )  p(V) (3.10) 

pT(ul, u2, t I V)= p(ul, u2, t I V ) -  p(ul) p(u2, t I V ) -  p(uz) p(ul, t L V) 

- p(ul, u2) p(V) + 2p(u~) p(u2) p(V) (3.11) 

At t = 0, these functions are a product of Maxwellians in momentum 
space and the equilibrium Ursell functions in configuration space. The 
latter are known to have good cluster properties in many cases, e.g., for an 
homogeneous OCP in the Debye-Htickel regime, they decay exponentially 
fast at large distances. (~9) 

We now assume that the time-dependent correlations still have 
reasonably good cluster properties. In particular we make the following 
assumptions for the homogeneous OCP: 

(i) There is a sufficiently fast decay in momentum space 

M 
IP(q, P, t ] V)l ~< [pin, t/> 5 (3.12) 

for fixed q, t, V. This insures the existence of the second moment, so the 
kinetic energy density is finite. 
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by 
(ii) The space and momentum distribution is bounded for ]q] --+ oo 

for fixed p, t, V. 

(iii) 
least as 

M 
IPr(q,p,t[ V)[~<I ['q'3 (3.13) 

The charge density Pr(q, t l V)= [ dp pr(q, p, t l V) decays at 

M 
]Pr(q, t I V)I ~< iql, ,  q > 5  (3.14) 

for fixed t and V. 

(iv) The three-point 
integrable on two variables 

truncated spatial correlations are jointly 

I dql f dq Iql IPr(ql, q2, t l q)l < oo (3.15) 

These cluster properties although not proven for any case, are in 
agreement with the small time expansion of the correlations; see Appen- 
dix B. [Notice that the density-density and density-momentum 
correlations (3.14) are expected to decay faster than the momentum- 
momentum correlations which are presumably not integrable on space for 
t # 0; see Appendix B. ] 

The precise assumptions required for the inhomogeneous systems we 
treat, i.e., those for which 

lim Pb(Jq[, f2)=p~(f2)  (3.16) 
]q l  ~ c o  

are more cumbersome to write down explicitly in a concise way; we will 
generally state them when used. Basically we will assume that their 
correlations converge sufficiently rapidly to those of the homogeneous 
OCP with density pb(Q) whenever all particle coordinates go to infinity in 
a fixed direction f2 (see Section 3.3). We also assume the same properties as 
in (3.12)-(3.14) whenever q tends to infinity in a direction which is not 
parallel to the boundary of D. The semi-infinite case will be treated more 
explicitly in Appendix D. 

Dynamical Equations. It will be useful to write the equations of 
motion in different forms. We first write the equivalent of (3.7) for the trun- 
cated functions. Substituting (3.10) and (3.11) in (3.7) gives 
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-~Pr(Ul, t [ V)= -P l"  Vq, pr(ul, t] V)-eE(ql)'Vp~pT(ul, t l V) 
m 

- eZ[Vp~p(u~)] "fD dq2 F(ql - q2) Pr(q2, t ] V) 

r 

- e Z J  dq2F(q~-qz)'Vp, pr(ul,q2, tl V) (3.17) 

In obtaining (3.17) we have used the equilibrium BGY equation 

fl-1Vq~p(ql) = eE(ql) p(q~) + e 2 f,~ dq2 F(q~ - q2)[P(q~, q2) - P(ql) P(q2)] 

(3.18) 
to cancel the contribution of time-independent terms. 

The evolution of the average of a momentum-independent function 
f(q) is obtained by integrating out the momentum in (3.17). The integrals 
of the Vpl terms gives no contribution because of the decay (3.12); thus we 
get 

Ot D dqf(q)pr(q ' t ]  V)=-- fD dq f(q) Vq" f dpPpr(q,  p, t I V) 
m 

P 
= fD dq[Vqf(q)]" f dp m Pr(q, P, t I V) (3.19) 

In the partial integration, there is no contribution at infinity by (3.13) and 
the surface contribution [. oD f(q) &r" ~ dp(p/m) Pr(q, P, t ] V) vanishes 
because of the reflection condition (3.9) [for q ~ ~D, change the variable 
p-~/5 and use with (3.9) the fact that p '  d~ = -/5. d~]. 

Finally, we find from (3.9), (3.17), and partial integration on momen- 
tum, that the second time derivative is given by 

02ID - ~  dql f(ql)  Pr(ql, t I V) 

=e---m~dql[Vqlf(ql)] '[O(ql)~dq2F(ql-q2)pr(qz,  t ' V)] (3.20) 

'fo + m dq~[Vq, f(ql)]" leE(q1) Pr(ql, t I V)] (3.21) 

1 
fDdq~ i dpl[pa'VqJ(ql)][pl"VqlPr(ql p l , t [  V)] (3.22) m 2 

e2i  D I~ + -- dql dq2 Vq~f (q l ) f (q l  - qa) Pr(q~, q2, t I V) (3.23) 
m 
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3.2. Charge and Dipole Sum Rules 

As mentioned in the introduction the plasma phase of the OCP is 
characterized by a set of sum rules expressing the perfect shielding of local 
charges(15'2~ in particular the static excess charge density of a (locally in-) 
homogeneous plasma carries no multipoles, i.e., with (3.6) 

e fdq~(q)  pT(q, t=01  V)=0  (3.24) 

where % is a harmonic polynomial of order L The case l =  0 (resp. l =  1) 
corresponds to the charge (resp. dipole) sum rule discussed earlier. We now 
look at the time-dependent generalizations of (3.24) from the point of view 
of the (formally) rigorous microscopic BBGKY hierarchy. 

Charge Sum Rule. Choosingf(q) = 1 in (3.19) gives immediately 

e z  dqpT(q, tl V)=0 

Hence, with the initial condition (3.24) for l=  0, we find 

e fDdqpr(q,t I V)=0 

for all times, or equivalently, with the symmetry (3.2), 

(3.25) 

e fDdq pr(V, t l q)=O 

We therefore conclude that the charge sum rule remains true in the course 
of time for a general inhomogeneous OCP and for arbitrary positions and 
momenta of initial particles. 

It is shown in Appendix C that the higher-order multipolar sum rules 
l>~ 1, k>~2 are not valid for t r  There is however one exception: the 
dipole sum rule in the uniform OCP, which we shall now prove. 

Dipole Sum Rule in the Uniform OCP. We notice that in the 
uniform OCP p(q)= Pb and E(q)= 0. Then Eq. (3.20) reduces to 

~t2 f dql f(ql) PT(ql, t I V) 

= -aflp f dql f(qt) PT(ql, t [ V) (3.26) 
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1 
m 2 fdql  fdpl[plVq, f (q l )][Pl"VqtPT(ql ,  Pl, t] V)] (3.27) 

s f dql f dqz[Vq, f(ql)]  "F(q, - q2) PT(ql, q2, t[ V) -brn J (3.28) 

with 

4~ze2pb 2_ (Jgp- 
m 

We have integrated the term (3.20) by parts and used Poisson's equation 
Vq . F(q) = 4~(q) .  

If we now choose f ( q ) =  q, the term (3.27) is the integral of a gradient 
which vanishes by the clustering (3.13). The term (3.28) is also zero 
because of the antisymmetry of F(q), so Eq. (3.26) becomes an ordinary 
second-order differential equation. From (3.24) and (3.19), the initial con- 
ditions are found to be [with V= (ql, Pl ;...; qk, Pk)-] 

f dqqpr(q, t = O [  ql ,  Pl,..., qk, Pk) = 0  

~-- dq qPr(q, t I ql, Pl ..... qk, Pk) Pj P(q~, Pl ..... qk, Pk) 
~t m j ~  

and the solution is thus 

f dq qPT(q, t [ ql, Pl ..... qk, Pg) 

=m~p j~-i pj P(ql, Pl,..., qk, pk)sin~opt (3.29) 

When we average (3.29) on initial momenta, we get 

e f dq qpr(q, t l ql,-.., qk) = 0  (3.30) 

for all t and all ql,..., qk, which is the time-dependent dipole sum rule. It 
can be understood as follows: in the OCP, the dipole (3.30) is proportional 
to the center of mass at time t of the local perturbation initially at ql,..., qk" 
Since the center of mass decouples from the relative coordinates, it is only 
subjected to the harmonic force of the background. Thus it oscillates at fre- 
quency ~op [Eq. (3.29)] and remains constant if there is no initial velocity. 
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The Second M o m e n t  of  the  S t r u c t u r e  Funct ion  in the  
Uniform OCP.  As an application of the charge and dipole sum rules, 
we derive the second moment relation Eq. (2.16) for the uniform OCP, 

3 fdq lq l2S(q ' t [O)=fdqf  dql S(ql, t lq) 

_- f l - i  cos COpt (3.31) 

In the uniform OCP, the Carnie and Chan form (2.16) is identical with the 
second moment expression. It is useful to treat this case first since the same 
methods will apply also to the inhomogeneous OCP treated in the next 
subsection. 

We take f ( q l ) =  1/Iqll, V=(q, p) in (3.26) and integrate over the 
position q and momentum p of the initial particle. We will establish below 
that, as a consequence of (3.25) and (3.30) the terms (3.27) and (3.28) 
vanish for all times, i.e., 

f d q { f d q l f  dpl(pl.f(ql))(pl.Vqlpr(ql, pl , t[q))}=O (3.32) 

fdq{;dq~fdq2F(ql) 'F(ql-q2)pr(q, ,q2,  t[q)}=O (3.33) 

Then, with the definitions (3.4), (3.5), Eq. (3.26) reduces again to the 
simple differential equation 

dq f dql [-~l[ S(ql, t l q)= -c@ f dq f dql l-~l[ S(ql, t ] q) (3.34) 

With the initial conditions ~dqSdq~(1/lqll)S(q~,t=O[q)=~ -1 (the 
Stillinger-Lovett perfect screening relation) and (O/~t)~dq~dql(1/[q~[) 
S(ql, t I q) [,-o = 0  which follows from (3.19), the solution of Eq. (3.34) is 
identical to (3.31). 

To show (3.32) and (3.33) we set 

h(q~, t[ q)= f dpl p~(p~ " V q l P T ( q l ,  P I ,  t[ q)) 

= - fdplpl(p1"Vqpr(O,p~, t lq-q~))  (3.35) 

[ q) = f dq2 F(q~ - q2) Pr(qx, q2, t ] q) g(ql, t 

= -Idq2F(q2)Pr( O, q2, t] q-q~) (3.36) 

where translation invariance has been used. 
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With this, the brackets in (3.32) and (3.33) can be written as gradient 
terms 

{...}(3.32 )= f dqt F(q~).h(O, t l q-q1) 

= Vq. f dq, ~ h(O, t ] q,) (3.37) 

{' "}(3.33)=Vq f 
1 

" " d q l ~ g ( O , t  ql) (3.38) 

Since h(0, t[ q) is itself a gradient, and with the decay (3.13), we have 
Sdqh(O, t l q ) = 0 .  Moreover, it follows from the charge sum rule (3.25) 
that 

f dq qh(O, t l q)= f dpl P~ Pl f dq pr(O, p~, t l q)=O 

Thus h(0, t lq) carries no charge and no dipole. The same is true for 
g(0, t [ q) as a consequence of (3.25) and of the dipole sum rule (3.30) for 
k = 2  

f dq qg(O, t [ q) = f dq2 F(q2) f dq qp r(O, q2, t[ q) = 0 

[we have also used the integrability condition (3.15) and the symmetry 
(3.2)]. Hence, the potentials due to the distributions h(0, t lq) and 
g(O, t tq) are o(1/[ql 2) as ]q[--~ ~ ,  showing that the integrals of the 
gradients (3.37) and (3.38) give no contributions at infinity. 

3.3. Dynamical  Sum Rules in the Inhomogeneous OCP 

We consider in this section a general inhomogeneous OCP with an 
asymptotically constant background density (3.16). EWe set p~ ( s  if 
the direction (2 does not belong to D.] We assume that 

M 
[p(r, (2) - p~(12)j ~< 7 '  r/> 1, q = (r = [q[, f2) (3.39) 

the limit being obtained without fast oscillations 

fo~ ~-~p(r,s < ~  (3.40) 
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The Dynamical Carnie and Chan Sum Rule. Let 

r q, t ) =  dq2 Iq, - qzl S(q2, t[ q) (3.41) 

be the potential at ql due to the distribution S(q2, t lq) for fixed q. We 
have 

)  Oxod ~(ql, q, 

since S(q2, t[ q) carries no net charge. 
We shall assume moreover that for fixed q~, r q, t) is integrable 

with respect to q and the integral is a uniformly bounded function of ql, 
i.e., 

fodq [r t)l < M, M independent of (3.43) q, qJ 

(See Appendix D for a discussion of this condition in the semi-infinite 
OCP.) 

We notice the following property of r q, t): as a consequence of 
Poisson's equation and the electroneutrality (3.25) 

t) = -&z fo dq S(q~, t[ q)=0 (3.44) Vq21r q, 

Thus ~ dqr q, t) is bounded and harmonic on the whole R3; it is 
therefore constant with respect to ql: 

fo dq r q, t )= fo dq r q, t) (3.45) 

To establish (2.16) we set again f(q~) = 1/Iq~l, v =  (q, p) in Eq. (3.20) 
and integrate it on q andp.  We will show below that under some 
additional integrability conditions all terms in the right hand side of (3.20) 
vanish except the first one. Thus we are left with 

~t2 fo dq r q, t) 

= - -  dq dql f ( q l ) ' E p ( q l ) V q t ~ ( q l  , q, t ) ]  (3.46) 
m 

+--  dq da~ " F(q~) p(ql) r q, t) 
m D 

, (3.47) 
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Since by (3.42) F(qa)p(ql)~b(ql, q, t)=o(1/[q~l 2) for fixed q, there are no 
contributions at infinity in the integration by parts leading to (3.47), where 
0D denotes the finite distance boundaries of D. Under the assumptions 
(3.40), (3.43), the integrand in (3.47) is jointly integrabte in q and ql, hence 
integrals can be permuted. From the property (3.45), we get 

with 

~t 2 fD dq fb(O, q, t)= --d92 ID dq qk(O, q, t) 

~2 e2fD fa 
=-- dq, Vq,. [p(ql)F(ql)]-  da~p(ql)F(ql) 

m D 

- --  lim dal" Vqj P(ql) 
mr- - ,~  qll= r 

e2 f s  = - -  lim d12 p(r, 12) = d12 Poo(12) 
m r~oo m 

(3.48) 

(3.49) 

where (3.39) and (3.40) have been used. 
The solution of (3.48) with initial conditions ~o dq q)(O, q, t= O)= fl 

(the inhomogeneous Stillinger-Lovett relation) and (~?/&) ~D dq 
~b(0, q,t) l ,=o=0 [which follows from (3.19)] is precisely the formula 
(2.16). 

It remains to explain why the terms (3.21), (3.22), and (3.23) vanish. 
Consider first the simple case of a local inhomogeneity: p~(12)= p~ is 
independent of 12. Let p(r ~176 be the correlations of the uniform OCP with 
constant background density p~,  and use the fact that the pure bulk con- 
tributions (3.32) and (3.33) vanish to write the terms (3.22) and (3.23) as 

dq{f  dql f dpl(pl"F(ql))[pl " Vq,(nr(ql, p~, t l q)-p(r~)(ql, pl, t 

dq { f dql f dqz F(ql) " F(ql - q2)(Pr(ql, q2, t l q) - P(r~176 q2, t 

q))]} 
(3.50) 

(3.51) 
If spatial arguments in Or -P( r  ~) are far apart, both Pr and p(r ~) vanish by 
clustering; when all arguments tend simultaneously to infinity in the same 
direction, pr-p(r  ~) tends to zero because of the convergence of the 
correlations of the inhomogeneous system to those of the uniform one. We 
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assume at this point that this convergence is sufficiently fast to have the 
integrands (3.50) and (3.51)jointly integrable in all spatial variables, so 
that we can permute the q and the other integrals. Then these terms vanish 
in view of the charge sum rules (3.25). In (3.21), one has E(ql)= O(1/[q~[ 2) 
and thus [Vqt(l/]ql I )] . E ( q l ) =  0(1/[q114). Hence with (3.14) the integrand 
is jointly integrable in q~, q. Performing the q integral first, we get again 
zero by the charge sum rule. 

In the general case, we define p~r ~ the correlations of an uniform 
OCP with constant background density po~(t'2). It follows from the 
rotation invariance of the uniform state that the brackets in (3.32) and 
(3.33) depend only on Iql. We have for instance from (3.33) for each 
fixed s 

fo ~ { ; ;  } dlql Iql ~ dq, dq2F(ql).F(q,-q2)p~~ q2, t[ Iql, Q) = 0  

and a similar identity corresponding to (3.32). We can now reproduce 
exactly the same argument as above replacing p(r~)(ql, p~, t lq) and 
P(~)(ql, q2, t l q) by p(T~176176 Pl, t[ Iql, f2) and p(r~176 q2, t]  Iql, f2)in 
(3.50) and (3.51). The case of the semi-infinite OCP is treated in detail in 
Appendix C. 

D ipo le  S u m  Rule  in t h e  S e m i - I n f i n i t e  OCP.  Under similar 
assumptions as in the preceding section, we easily recover the classical form 
of the dipole sum rule (2.43). Adding and substracting the corresponding 
bulk quantity, we get (with the same notations as in Section 2) 

dx C/Xl Jay,  Xl S(xl, y~, t l x) 

= dx dx I dy l x l [S ( x~ , y~ , t l x ) -S (~ 176  y l , t l x ) ]  

fo fof + dx dx~ dy~ x~S(~176 Yl, t[ x) (3.52) 

Assuming the joint integrability of the first moment of the difference of the 
semi-infinite and bulk structure function, we can permute the x and Xl 
integrals in the first term of the right-hand side of (3.52). Doing this and 
applying then the charge sum rule (3.25), the contribution from the semi- 
infinite system on the right side of (3.52) vanishes: 

dx @lS(Xl ,  Yl, t ] x ) =  dx @lS(x l ,  t ]x ,  Y l ) = O \  
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we then obtain 

;/ 
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E f dx dXl x1 dyl S(Xl, Yl, t [ x) 

f o f o  f = dx dxl xl  dy 1 S(~176 --x,  Yl, t ] O) 

fo o fo o ; -- dxl d x x l  dyl S(~ Yl,  riO) 

fo fo f = dx dxl(x  1 - x )  dy 1 S(V~ Yl, t l O) 

l I~176  f 1 dx x a dy S(~176 y, t l O)= -4----~coS (3.53) 
- - o o  

(3.53) results simply of the bulk second moment relation (3.31), and this 
gives the classical limit of (2.43). 

With a treatment analogous to (3.52) for the half spaces x~ < 0 and 
xl >0  in the OCP with two densities, we get by the same reasoning the 
classical versions of (2.46a) and (2.46b). 
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APPENDIX A: P L A S M A  IN A WEDGE 

For a plasma in a wedge of angle ~, (2.15) becomes 

l im2 drl rl dO1 dr r dO Ko(Ikl rl) S(rl,  01, k, t l r, O ) 
k~O 

h~5 F exp(-ie3t) exp(&3t) ] 
=-2- L1 -e-~-p(-~-ch) 1 -exp(/~he3)J 

(A1 

where c3 is defined by (2.28). The Bessel function K0(Ik[ r~) makes the 
integral absolutely convergent, and the order of the integrations is 
arbitrary. In the left-hand side of (A1), there are contributions from (rl, 01) 
far away from the walls, with the bulk behavior 
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-( ) lim drr j  dOS r i , ~ , k ,  t l r ,  O 
rl ~ ~176 0 

exp(-ia~pt) exp(io~pt) ] [k]2 ' 
"~lh~ 1 - exp(flhCOp)J when k ~ 0  

(A2) 

[the left-hand side of (A2) is (2.21) transposed to cylindrical coordinates]. 
There are also contributions from (rl, 01) near one of the walls but far 
away from the edge of the wedge, with the semi-infinite geometry behavior 

If ; lim r 1 dO1 dr r dO S(rl, 0 1 ,  k, t ] r, O) 
rl ~ ~176 0 

-c~ drr dOS r l , ~ , k ,  t l r ,  O 

1 [ exp(-kost  ) exp(i~s t) ] 
~2--~ h~~ I -exp(-flhrv~ ) 1 - - ~ , ) 3  

I exp(-i~opt) exp(i~Opt) ] 
1 hogp 1 - exp(flh~op)j tkl' 4~z -- e--~p(-'---fl-~p) 1 

when k ~ O  

(A3) 

[The left-hand side of (A3) is Eq. (3.13) of Ref. 10, transposed to cylin- 
drical coordinates, and multiplied by a factor 2 because there are con- 
tributions from both walls of the wedge.] The contributions of (A2) and 
(A3) to (A1) are easily computed, since they involve the integrals 

f0 ~ I~ zTr (A4) dr~ rlk2Ko(Ik[ r~)= 1, dr~ ]k[ Ko(lkl r , ) = =  
gO 

Substracting in (A1) the contributions from (A2) and (A3), we find 

lira2 drlKo(lk[rl) rl dO1 drr dOS(r l ,01 ,k , t [r ,O ) 
k ~ O  

) --rl~r~im ~ arr dO~ r l ,5 ,~ , t l~ ,O 

- -  lim r 1 dO1 drr dOS(rl,01,k, tJr, O) 
ri ~ cx3 

- ~  drr dOS r l , -~ ,k , t ]r ,O 
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exp ( -  ifht) exp(ieSt) 
=heS2 1 - ~ e S )  1 - ~ 0 5 ) ]  

boos I e x p ( -  ie)st) _exp(ie)s t) 
2 1 - exp(-flho),) 1 - exp(]~he),)J 

+ 2 - ~  ~ 1-exp(-Bhc~p) 1 - e x ~ e i J  
(A5) 

We now assume that the curly bracket in the left-hand side of (A5) 
goes rapidly to zero as rl increases, since we have substracted all con- 
tributions except those from the neighborhood of the edge. Thus we can 
replace K0 by its leading term for small Ik[ rl 

Ko(Ik] r l )~  -ln(Ikl r~) (A6) 

Furthermore, the curly bracket in (A5) vanishes at k = 0 ,  because of the 
perfect screening condition 

dr r dO S(rl, 01,0, t I r, 0) = 0 (A7) 

Thus only the term - I n  Ik[ of (A6) contributes in the limit k = 0 ,  and 
~ dr1{"" } behaves like - C / ( 2  In Ikl), where C is the right-hand side of 
(A5). If there is no other singularity on the reak k axis, a function of k 
which behaves like -C/(21n Ikl) has an inverse Fourier transform, a 
function of z, which behaves asymptotically (13] like -C/[4 [zt (ln izi)2]. 
Since the bulk and surface contributions on (A5) have a faster decay, and 
assuming that the asymptotic form of S with respect to z - zl is unchanged 
by the integration upon the variables r, 0, rl, 01, we obtain (2.31). 

A P P E N D I X  B: T I M E  D E R I V A T I V E S  AT t = 0  

We compute the first and second time derivative of the correlations at 
t=0 .  For simplicity, we consider the homogeneous case P(q)=Pb, 
E(q) = 0. The calculation involves the following steps. 

(i) We single out the contribution of coincident points in the 
equilibrium correlations: 

p(u,t--01 v)=p(u, v)+ 6(u, vj) p(V) (B1) 
1 
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p(u, u', t = 01 v) = p(u, u', v) + ~(u, vj) p(u 1, v) 
j 1 

+ jY'I ~(u', vj) p(u, v) 

+ vi) 6(u 1, vj) p(v) (~2) 
i 

and so on I V =  (ql, Pl ;...; qk, P~), 6(u, vj) = f i ( q -  qj) 6(p - pj)]. 
(ii) We eliminate the higher-order correlations with the help of the 

equilibrium BGY equation: 

f i -  1Vq, p(q ~ ,..., q~) 

k 

= ~ F ( q , -  qj) P(ql ..... qk) 

+ f dqF(q~--q) (p(q l , . . . ,qk ,  q)--PbP(q~, . . . ,qk))  (B3) 

(iii) We perform momentum integrations with the Maxwellian dis- 
tribution. With this, it is found from (3.7) that for q ~ ql,-.., qk 

U, ?SPT( t[ V) ,=o=0  

so the first derivative is strictly local in q. 
We compute (02/c~t 2) p(u, t l V) [,=o by iterating (3.7) and introducing 

the second BBGKY equation 

0 
Ot p(ul, u2, t[ V) 

=-(P~.v +~. ) \ m  ql. m Vq2 p(u l , u2 ,  t] V) 

- e 2 [ F ( q l - q 2 ) "  Vp~ + F ( q 2 - q l ) "  Vp2] p(ul ,  u2, t l V) 

- e 2 f dq3[F(q~ - q 3 ) ' V m  + F(q2 -- q3) "Vp21 

x [p(ul, u2, q3, t] V ) - - p b p ( u l ,  u2, q3, t t V)] (B4) 
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Using repeatedly (B2) and (B3) the final result takes the simple form for 
qr q~ 

~ 2  t = O  - -  
- ~  pr(u, t l V) fie2 (B5) m2 p(u, V) ~ (p.Vq)(pj. Vq) l 

j =  1 I q  - qjl 

The right-hand side of (B5) can be interpreted as the instantaneous 
dipole potential due to the displacements (p/m) dt and (pjm) dt of the par- 
ticles. (B5) shows that up to order t 2 there is a fast decay in momentum 
space [p(u, V) is Maxwellian], but the decay in space is not faster than 
Iq1-3 [cf. (3.13)]. However, the right-hand side of (B5) vanishes when it is 
integrated on p, indicating that the charge correlations have faster decay 
properties [cf. (3.14)]. 

APPENDIX C: SUM RULES AT t r  

To investigate the validity of the higher order sum rules (1>/1) at 
t :/= 0, we explicitly compute the time derivative of the excess particle den- 
sity at t=0 .  Separating the Maxwellian distribution from the con- 
figurational part, and using the fact that the average equilibrium momen- 
tum is zero, Eq. (3.19) gives for t = 0 [with V= (ql, P~ ;-..; qk, Pk)] 

e~-~-f dqYll(q) pr(q,t I V ) t = 0 = e l i ~  ] ~t z~ , pj.Vq/~(qj) p(V) ( e l )  

The right-hand side of (C1) with 14:0 [Y/;(q)r is obviously not 
zero, for a general V, showing that the higher-order multipoles are not con- 
served when we specify an initial distribution of particles with arbitrary 
velocities. 

If we only specify the initial positions (averaging over Pl ..... Pk), ( e l )  
vanishes, and we have to discuss the second-order time derivative. We con- 
sider the homogeneous case p(q)= Pb, E(q)= 0 and find from (3.20) 

(~2 f t=O Ot--- 5 dq ~,(q) Pr(q, t I q,,..., qk) 

1 
- m2 f dq f dp[p'Vq~;(q)] [p'Vqpr(q, p, 0 [ ql ..... qk)] (C2) 

j +--  dq dq '[Vq~t(q)]F(q-q ' )  
m 

x [p(q, q', 0 t ql ..... qk) -- PbP(q, 0 I ql,..., qk)] (C3) 
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(C3) results from the combination of the terms (3.20) and (3.23) with the 
definition of the truncated functions. In (C2) we can perform the p 
integration on the spherically symmetric Maxwellian distribution. After an 
integration by parts on q, we see that this term vanishes since Vq2Nt(q) = 0. 
In (C3), we tract the contribution of coincident points with the help of 
(B2). Then, we use the equilibrium equation (B3) together with V ~ ( q ) =  0 
to eliminate the occurrence of the force, and we are finally left with 

02 f t=o ~?t---~. dq ~(q) Pr(q, t ] qx ..... q~,) 

1 k 
= ~-~j~=, (Vqj~(qj))'Vqjp(q, ,..., q#) (C4) 

In the uniform OCP, (C5) vanishes in the following three cases: 
( a ) / = 0 ,  all k, corresponding to the charge sum rule (3.25); ( b ) l =  1, all k 
(because of the translation invariance), corresponding to the dipole sum 
rule (3.30); ( c ) k =  l, all /, corresponding to the spherically symmetric 
structure function. In all other cases (C5) is in general not zero, showing 
that the multiple sum rules for l~> 1, k ~> 2 cannot hold in the uniform OCP 
at t r  

APPENDIX D: SEMI- INFINITE P L A S M A  

We discuss in some details the conditions (3.42) and (3.43) as well as 
the terms (3.50) and (3.51) for the semi-infinite OCP. Similar arguments 
apply to the OCP with two densities. 

The working hypothesis is that the difference of the semi-infinite and 
bulk structure functions are jointly integrable in x~, Yl and x > 0, i.e., 

f ?  dx f dXl f dyl [O(x~) S(xl, Yl, 
(D1) 

O(x~) = O, 

[Note that in (D1), the contribution of x~ < 0, 

f ?  dx f~ dxl f dyl lS(~)(xJ - x, y~ 

t I x )  - S<~176 y ~ ,  I I x ) l  < oo 

x i > O  

Xl<O 

, t l 0)1 

dx1 f dyl x1 IS(~176 Yl,  -r I 0)1 

which involves only the bulk function, is finite.] 

822/41/'5-6-16 
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Similarly, we assume that the functions h and g defined in (D3) and 
(D4) below are integrable in Xl Yl and x > 0. 

Notice that 

; O(~176 q, t) = dq2 Iq~ - q -  q2l S(~176 t [ 0) 

is rapidly decreasing as ]q[ ~ oo since the spherically symmetric function 
S(~176 2, t ] 0 )  has no charge and multipoles. To get (3.42) it is therefore 
sufficient to show that 

q~(ql, X, y, t) -- q~(m)(ql, X, y, t) 

x [0(x2) S(x2, Y2, t I x) - S(~176 Y2, t I x)] (D2) 

is integrable in y and x > 0 .  Integrability on x is insured by (D1). 
Moreover, since S(x2, Y2, t l x ) - S ( ~ ) ( x 2 ,  Y2, t l x) has no dipole in the y 
direction (because of the y ~ - y  invariance), the potential (D2) decays 
faster than 1/lyl 2 as [Yl ~ oo providing integrability in the y plane. 

We show that the terms (3.50) and (3.51) vanish in the semi-infinite 
OCP. We define as in (3.35) and (3.36) 

h(ql, t l q) 

= f dpl p~[O(xl)p~ "VqlPr(ql, p,, t[ q ) - p ~  .Vqlp(r~ p~, t[ q)] (D3) 

g(ql, t l q) 

= fdq2F(q , -q2)[O(x~)O(x2)pr (q l ,q2 ,  t lq)-p~r~)(ql ,q2,  t [q)]  (D4) 

Then we have 

f dx I ~ dxf dyh(x1, t I x, y)=O (D5)  

f dx 1 ~ dx f dy g(xl, t IX, y)~-O (D6) 

and use the In (D3) we distinguish between the y and x components of Vql 
invariance under translations in the y direction to write 

3 3 
p l " V , l =  p f ' V y l +  p~ ~&--= - p f - V , +  p~ 

Oxl 
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The y integral of the - p ( ' V y  term vanishes, and performing the xl 
integral first in the p?~(~/3xl) term gives 

I dXl I? dx l ds h(xx, t ] x, Y) 

= -  dplp~p~J ~ dx dypr(O, px, tEx, y)=O (D7) 

because of the charge sum rule (3.25). This gives (D5), Eq. (D6) results of 
the antisymmetry of the force under the exchange of the ql and q2 
arguments. 

With the definitions (D5) the term (3.50) reads 

;o~ dx f dy f dx, i @l F(Xl, Yl)" h(Xl, t , x, y -  y,) 

= f dy f dxx f dy, F(xl, y -  y,)" ;? dx h(Xl, t l x -  yl) (D8) 

where we have permuted the x and xl, y~ integrals in view of the 
integrability assumption on h. Writing explicitly the y and x components 
F y and F X of the force in (D8) gives rise to two terms 

-- ~ ~,jdYV.v')dx1 dYl dxhX(xl, ~1 x, Yl) (D9) 

and 
X1 ~oo 

fdyfdxl fdYl[x2+(y-yl )2]a/2Jo dxh~(Xl,t]x, Yl) 

= 2rt f dx, sign xl ~[ dy, ~ hV(x1, t IX, Yl) (D1O) 

where the y integral has been performed: S dy x j (x  2 + y2)3/2 = 2~z sign xl. 
The term (D9) is the y integral of the gradient of a potential which is 

o(1/lyl) because of (D5): hence it vanishes. 
The term (D10) is explicitly 

~ 

ID,,, 
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I n  the last  t e rm of ( D l l ) ,  the x in tegra l  has  been  ex tended  f rom - o r  to 

+ ~ by  the space ref lexion s y m m e t r y  of the  h o m o g e n e o u s  state, T h e n  b o t h  

te rms  of ( D l l )  van i sh  because  of the charge  s u m  rule  (3.25). This  proves  
tha t  (3.50) does n o t  c o n t r i b u t e  to the  e q u a t i o n  of m o t i o n  in  the  semi-  

inf ini te  O C P .  The  t e rm  (3.51) is t rea ted  in  the s ame  way  wi th  h rep laced  

by g. 
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